Integralrechnung


aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Datei:Integral as region under curve.svg
Anschauliche Darstellung des Integrals als Flächeninhalt <math>S</math> unter einer Kurve der Funktion <math>f</math> im Integrationsbereich von <math>a</math> bis <math>b</math>.

Die Integralrechnung ist neben der Differentialrechnung der wichtigste Zweig der mathematischen Disziplin der Analysis. Sie ist aus dem Problem der Flächen- und Volumenberechnung entstanden. Das Integral ist ein Oberbegriff für das unbestimmte und das bestimmte Integral. Die Berechnung von Integralen heißt Integration.

Das bestimmte Integral einer Funktion ordnet dieser einen Zahlwert zu. Bildet man das bestimmte Integral einer reellen Funktion in einer Variablen, so lässt sich das Ergebnis im zweidimensionalen Koordinatensystem als Flächeninhalt der Fläche, die zwischen dem Graphen der Funktion, der <math>x</math>-Achse und den begrenzenden Parallelen zur <math>y</math>-Achse liegt, deuten. Hierbei zählen Flächenstücke unterhalb der <math>x</math>-Achse negativ. Man spricht vom orientierten Flächeninhalt. Diese Konvention wird gewählt, damit das bestimmte Integral eine lineare Abbildung ergibt, was sowohl für theoretische Überlegungen als auch für konkrete Berechnungen eine zentrale Eigenschaft des Integralbegriffs darstellt.

Das unbestimmte Integral einer Funktion ordnet dieser eine Menge von Funktionen zu, deren Elemente Stammfunktionen genannt werden. Diese zeichnen sich dadurch aus, dass ihre ersten Ableitungen mit der Funktion, die integriert wurde, übereinstimmen. Der Hauptsatz der Differential- und Integralrechnung besagt, dass (bestimmte) Integrale aus Stammfunktionen berechnet werden können.

Im Gegensatz zur Differentiation existiert für die Integration auch elementarer Funktionen kein einfacher und kein alle Fälle abdeckender Algorithmus. Integration erfordert trainiertes Raten, Benutzung spezieller Umformungen (Integration durch Substitution, partielle Integration), Nachschlagen in einer Integraltafel oder Benutzung spezieller Computer-Software. Oft erfolgt die Integration nur näherungsweise mittels so genannter numerischer Quadratur.

In der Technik benutzt man zur näherungsweisen Flächenbestimmung so genannte Planimeter, bei welchen die Summierung der Flächenelemente kontinuierlich erfolgt. Der Zahlenwert der so bestimmten Fläche kann an einem Zählwerk abgelesen werden, welches zur Erhöhung der Ablesegenauigkeit mit einem Nonius versehen ist. Chemiker pflegten früher Integrale beliebiger Flächen mit Hilfe einer Analysenwaage oder Mikrowaage zu bestimmen: Die Fläche wurde sorgfältig ausgeschnitten und gewogen, ebenso ein genau 10 cm × 10 cm großes Stück des gleichen Papiers; eine Dreisatzrechnung führte zum Ergebnis.

Inhaltsverzeichnis

Geschichte

Flächenberechnungen werden seit der Antike untersucht. Im 5. Jahrhundert vor Christus entwickelte Eudoxos von Knidos nach einer Idee von Antiphon die Exhaustionsmethode, die darin bestand, Verhältnisse von Flächeninhalten mittels enthaltener oder überdeckender Polygone abzuschätzen. Er konnte durch diese Methode sowohl Flächeninhalte als auch Volumina einiger einfacher Körper bestimmen. Archimedes (287–212 v. Chr.) verbesserte diesen Ansatz, und so gelang ihm die exakte Bestimmung des Flächeninhalts einer von einem Parabelbogen und einer Sekante begrenzten Fläche ohne Rückgriff auf den Grenzwertbegriff, der damals noch nicht vorhanden war; dieses Ergebnis lässt sich leicht in das heute bekannte Integral einer quadratischen Funktion umformen. Zudem schätzte er das Verhältnis von Kreisumfang zu Durchmesser, <math>\pi</math>, als Wert zwischen <math>\textstyle{3\frac{10}{71}}</math> und <math>\textstyle{3\frac{10}{70}}</math> ab.

Diese Methode wurde auch im Mittelalter benutzt. Im 17. Jahrhundert stellte Bonaventura Francesco Cavalieri das Prinzip von Cavalieri auf, wonach zwei Körper das gleiche Volumen haben, wenn alle parallelen ebenen Schnitte den gleichen Flächeninhalt haben. Johannes Kepler benutzte in seinem Werk Astronomia Nova (1609) bei der Berechnung der Marsbahn Methoden, die heute als numerische Integration bezeichnet werden würden. Er versuchte ab 1612, den Rauminhalt von Weinfässern zu berechnen. 1615 veröffentlichte er die Stereometria Doliorum Vinariorum („Stereometrie der Weinfässer“), später auch als keplersche Fassregel bekannt.

Ende des 17. Jahrhunderts gelang es Isaac Newton und Gottfried Wilhelm Leibniz unabhängig voneinander, Kalküle zur Differentialrechnung zu entwickeln und so den Fundamentalsatz der Analysis zu entdecken (zur Entdeckungsgeschichte und zum Prioritätsstreit siehe den Artikel Infinitesimalrechnung; zum Integralzeichen und dessen Geschichte siehe Integralzeichen). Ihre Arbeiten erlaubten das Abstrahieren von rein geometrischer Vorstellung und werden deshalb als Beginn der Analysis betrachtet. Bekannt wurden sie vor allem durch das Buch des Adligen Guillaume François Antoine, Marquis de L’Hospital, der bei Johann Bernoulli Privatunterricht nahm und dessen Forschung zur Analysis so publizierte. Der Begriff Integral geht auf Johann Bernoulli zurück.

Im 19. Jahrhundert wurde die gesamte Analysis auf ein solideres Fundament gestellt. 1823 entwickelte Augustin-Louis Cauchy erstmals einen Integralbegriff, der den heutigen Ansprüchen an Stringenz genügt. Später entstanden die Begriffe des Riemann-Integrals und des Lebesgue-Integrals. Schließlich folgte die Entwicklung der Maßtheorie Anfang des 20. Jahrhunderts.

Integral für kompakte Intervalle

„Kompakt“ bedeutet hier beschränkt und abgeschlossen, es werden also nur Funktionen auf Intervallen der Form <math>_{a}^{b} - \int_a^b f(x)\cdot g'(x)\,\mathrm{d}x </math>.

Diese Regel ist dann von Vorteil, wenn die Funktion <math>f(x)\cdot g'(x)</math> einfacher als die Funktion <math>f'(x)\cdot g(x)</math> zu integrieren ist. Hierbei sind jedoch die Produkte und nicht die Faktoren selbst zu bewerten.

Beispiel:

<math>\int_a^b x \ln(x)\,\mathrm dx.</math>

Setzt man

<math>f'(x)=x\,</math> und <math>g(x) = \ln(x)\,</math>

so ist

<math>f(x) = \frac{x^2}2</math> und <math>g'(x)=\frac 1x</math>,

und man erhält

<math>\begin{align}

\int_a^b x\ln(x)\,\mathrm dx &= \frac{b^2}2 \ln(b) - \frac{a^2}2\ln(a)- \int_a^b \frac{x^2}2\cdot\frac 1x\,\mathrm dx\\

                            &= \frac{b^2}2 \left(\ln(b)-\frac 12\right) - \frac{a^2}2 \left(\ln(a)-\frac 12\right).

\end{align}</math>

Integration durch Substitution

Die Substitutionsregel ist ein wichtiges Hilfsmittel, um einige schwierige Integrale zu berechnen, da sie bestimmte Änderungen der zu integrierenden Funktion bei gleichzeitiger Änderung der Integrationsgrenzen erlaubt. Sie ist das Gegenstück zur Kettenregel in der Differentialrechnung.

Sei <math>\varphi(x) = f(g(x)) \cdot g'(x)</math> mit <math>g'\ne 0</math> und <math>F</math> eine Stammfunktion von <math>f</math>, so ist <math>\Phi(x) = F(g(x))</math> eine Stammfunktion von <math>\varphi</math>, denn es gilt

<math>\frac{\varphi(x)}{g'(x)} = f(g(x))</math>

und mit der Substitution

<math>z = g(x),\quad\mathrm dz = g'(x)\mathrm dx</math>

schließlich

<math>\begin{align}
 \int_a^b f(g(x)) g'(x) \mathrm dx &= \int_{g(a)}^{g(b)}f(z)\mathrm dz\\
                                   &= F(g(b))-F(g(a))\\
                                   &= \Phi(b)-\Phi(a).

\end{align}</math>

Umformung durch Partialbruchzerlegung

Bei gebrochenrationalen Funktionen führt häufig eine Polynomdivision oder eine Partialbruchzerlegung zu einer Umformung der Funktion, die es erlaubt, eine der Integrationsregeln anzuwenden.

Spezielle Verfahren

Oft ist es möglich, unter Ausnutzung der speziellen Form des Integranden die Stammfunktion zu bestimmen.

Eine weitere Möglichkeit besteht darin, bei einem bekannten Integral zu beginnen und dieses durch Integrationstechniken solange umzuformen, bis das gewünschte Integral entsteht. Beispiel:

Um <math>\textstyle \int\frac{\mathrm dx}{(1+x^2)^2}</math> zu bestimmen, integrieren wir das folgende ähnliche Integral partiell:

<math>\begin{align}

\arctan x &= \int 1\cdot\frac{1}{1+x^2}\,\mathrm dx\\

 &= x\cdot\frac{1}{1+x^2} + \int x\cdot\frac{2x}{(1+x^2)^2}\,\mathrm dx \\
 &= \frac{x}{1+x^2} + \int\left(\frac{2x^2}{(1+x^2)^2}+\frac{2}{(1+x^2)^2}\right)\,\mathrm dx - \int\frac{2}{(1+x^2)^2}\,\mathrm dx \\
 &= \frac{x}{1+x^2} + 2\int\frac{1+x^2}{(1+x^2)^2}\,\mathrm dx - 2\int\frac{1}{(1+x^2)^2}\,\mathrm dx \\
 &= \frac{x}{1+x^2} + 2\arctan x - 2\int\frac{\mathrm dx}{(1+x^2)^2}.

\end{align}</math>

Durch Umstellen folgt

<math>\int\frac{\mathrm dx}{(1+x^2)^2} = \frac12\left(\frac{x}{1+x^2} + \arctan x\right).</math>

Anwendungen

Mittelwerte stetiger Funktionen

Um den Mittelwert <math>m</math> einer gegebenen stetigen Funktion <math>f</math> auf einem Intervall <math>\to V</math>, die Werte in einem separablen Banachraum V annehmen, stimmt das Pettis-Integral mit dem McShane- und dem Bochner-Integral überein. Wichtigster Spezialfall all dieser Definitionen ist der Fall von Funktionen in den <math>\mathbb{R}^n</math>, welche bei allen diesen Definitionen einfach komponentenweise integriert werden.

Verallgemeinerungen

Maßtheorie

Hauptartikel: Maßtheorie

Haarsches Maß

Hauptartikel: Haarsches Maß

Das Haarsche Maß, nach Alfréd Haar, stellt eine Verallgemeinerung des Lebesgue-Maßes für lokalkompakte topologische Gruppen dar und induziert damit auch ein Integral als Verallgemeinerung des Lebesgue-Integrals.

Integration auf Mannigfaltigkeiten

Siehe: Integration von Differentialformen

Schließlich kann Integration auch dazu verwendet werden, Oberflächen von gegebenen Körpern zu messen. Dies führt in das Gebiet der Differentialgeometrie.

Siehe auch

Literatur

  • Schulbücher:
    • Integralrechnung ist ein zentraler Unterrichtsgegenstand in der Sekundarstufe II und wird somit in allen Mathematik-Lehrbüchern behandelt.
  • Lehrbücher für Studenten der Mathematik und benachbarter Fächer (Physik, Informatik):
  • Lehrbücher für Studenten mit Nebenfach/Grundlagenfach Mathematik (zum Beispiel Studenten der Ingenieur- oder Wirtschaftswissenschaften):
    • Rainer Ansorge und Hans Joachim Oberle: Mathematik für Ingenieure. Band 1. 3. Auflage. Wiley-VCH, 2000
    • Lothar Papula: Mathematik für Naturwissenschaftler und Ingenieure. Band 1
  • Historisches:
    • Adolph Mayer: Beiträge zur Theorie der Maxima und Minima der einfachen Integrale. Teubner, Leipzig 1866 (Digitalisat)
    • Bernhard Riemann: Ueber die Darstellbarkeit einer Function durch eine trigonometrische Reihe. Göttingen 1867 (Volltext), mit der Erstdefinition des Riemann-Integrals (Seite 12ff.)

Weblinks

Wiktionary Wiktionary: Integralrechnung – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

<references />